Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 425
Filtrar
1.
Cardiovasc Toxicol ; 22(10-11): 898-909, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35986807

RESUMO

Hypertension caused by a high-salt (HS) diet is one of the major causes of cardiovascular diseases. Underlining pathology includes oxidative stress and inflammation in the hypothalamic paraventricular nucleus (PVN). This study investigates genistein's (Gen) role in HS-induced hypertension and the underlying molecular mechanism. We placed male Wistar rats on HS (8% NaCl) or normal salt diet (0.3% NaCl). Then, we injected bilateral PVN in rats with Gen, vehicle, or nicotinamide (NAM) for 4 weeks. Tail cuff was used weekly to assess the systolic pressure, diastolic pressure, and mean arterial pressure (MAP). Cardiac hypertrophy was analyzed by heart weight/body weight ratio and wheat germ agglutinin staining. ELISA kits, Western blot, or dihydroethidium staining determined the levels of inflammatory cytokines and oxidative stress markers. Western blot measured protein levels of Sirt1, Ac-FOXO1, Nrf2, NQO-1, HO-1, and gp91phox. Our result showed that PVN infusion of Gen significantly reduced the increase of systolic pressure, diastolic pressure, and MAP induced by an HS diet. Additionally, there was a decrease in cardiac hypertrophy and the levels of inflammatory cytokines in PVN and plasma. Meanwhile, PVN infusion of Gen notably inhibited the levels of oxidized glutathione and superoxide dismutase and improved the glutathione level and total antioxidant capacities and superoxide dismutase activities. It also decreased the level of reactive oxygen species and gp91phox expression in PVN. Furthermore, Gen infusion markedly increases the Sirt1, Nrf2, HO-1, and NQO-1 levels and decreases the Ac-FOXO1 level. However, PVN infusion of NAM could significantly block these changes induced by Gen in HS diet rats. Our results demonstrated that PVN infusion of Gen could inhibit the progression of hypertension induced by an HS diet by activating the Sirt1/Nrf2 pathway.


Assuntos
Genisteína , Hipertensão , Estresse Oxidativo , Núcleo Hipotalâmico Paraventricular , Animais , Masculino , Ratos , Antioxidantes/metabolismo , Cardiomegalia/patologia , Citocinas/metabolismo , Genisteína/farmacologia , Dissulfeto de Glutationa/metabolismo , Hipertensão/induzido quimicamente , Hipertensão/prevenção & controle , Hipertensão/metabolismo , Inflamação/induzido quimicamente , Inflamação/prevenção & controle , Fator 2 Relacionado a NF-E2/metabolismo , Niacinamida/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Núcleo Hipotalâmico Paraventricular/fisiopatologia , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo , Sirtuína 1/metabolismo , Cloreto de Sódio na Dieta/efeitos adversos , Superóxido Dismutase/metabolismo
3.
Am J Physiol Regul Integr Comp Physiol ; 322(3): R161-R169, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35018823

RESUMO

Arginine vasopressin (AVP) is produced in the paraventricular (PVN) and supraoptic nuclei (SON). Peripheral AVP, which is secreted from the posterior pituitary, is produced in the magnocellular division of the PVN (mPVN) and SON. In addition, AVP is produced in the parvocellular division of the PVN (pPVN), where corticotrophin-releasing factor (CRF) is synthesized. These peptides synergistically modulate the hypothalamic-pituitary-adrenal (HPA) axis. Previous studies have revealed that the HPA axis was activated by hypovolemia. However, the detailed dynamics of AVP in the pPVN under hypovolemic state has not been elucidated. Here, we evaluated the effects of hypovolemia and hyperosmolality on the hypothalamus, using AVP-enhanced green fluorescent protein (eGFP) transgenic rats. Polyethylene glycol (PEG) or 3% hypertonic saline (HTN) was intraperitoneally administered to develop hypovolemia or hyperosmolality. AVP-eGFP intensity was robustly upregulated at 3 and 6 h after intraperitoneal administration of PEG or HTN in the mPVN. While in the pPVN, eGFP intensity was significantly increased at 6 h after intraperitoneal administration of PEG with significant induction of Fos-immunoreactive (-ir) neurons. Consistently, eGFP mRNA, AVP hnRNA, and CRF mRNA in the pPVN and plasma AVP and corticosterone were significantly increased at 6 h after intraperitoneal administration of PEG. The results suggest that AVP and CRF syntheses in the pPVN were activated by hypovolemia, resulting in the activation of the HPA axis.


Assuntos
Arginina Vasopressina/genética , Proteínas de Fluorescência Verde/genética , Sistema Hipotálamo-Hipofisário/metabolismo , Hipovolemia/metabolismo , Núcleo Hipotalâmico Paraventricular/metabolismo , Animais , Corticosterona/sangue , Hormônio Liberador da Corticotropina/genética , Hormônio Liberador da Corticotropina/metabolismo , Modelos Animais de Doenças , Genes Reporter , Proteínas de Fluorescência Verde/biossíntese , Sistema Hipotálamo-Hipofisário/fisiopatologia , Hipovolemia/genética , Hipovolemia/fisiopatologia , Injeções Intraperitoneais , Masculino , Núcleo Hipotalâmico Paraventricular/fisiopatologia , Polietilenoglicóis/administração & dosagem , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos Transgênicos , Ratos Wistar , Solução Salina Hipertônica/administração & dosagem , Núcleo Supraóptico/metabolismo , Núcleo Supraóptico/fisiopatologia , Fatores de Tempo , Regulação para Cima
4.
Thyroid ; 32(1): 105-114, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34726513

RESUMO

Background: Thyrotropin-releasing hormone (TRH) was the first hypothalamic hormone isolated that stimulates pituitary thyrotropin (TSH) secretion. TRH was also later found to be a stimulator of pituitary prolactin and distributed throughout the brain, gastrointestinal tract, and pancreatic ß cells. We previously reported the development of TRH null mice (conventional TRHKO), which exhibit characteristic tertiary hypothyroidism and impaired glucose tolerance due to insufficient insulin secretion. Although in the past five decades many investigators, us included, have attempted to determine the hypothalamic nucleus responsible for the hypothalamic-pituitary-thyroid (HPT) axis, it remained obscure because of the broad expression of TRH. Methods: To determine the hypothalamic region functionally responsible for the HPT axis, we established paraventricular nucleus (PVN)-specific TRH knockout (PVN-TRHKO) mice by mating Trh floxed mice and single-minded homolog 1 (Sim1)-Cre transgenic mice. We originally confirmed that most Sim1 was expressed in the PVN using Sim1-Cre/tdTomato mice. Results: These PVN-TRHKO mice exhibited tertiary hypothyroidism similar to conventional TRHKO mice; however, they did not show the impaired glucose tolerance observed in the latter, suggesting that TRH from non-PVN sources is essential for glucose regulation. In addition, a severe reduction in prolactin expression was observed in the pituitary of PVN-TRHKO mice compared with that in TRHKO mice. Conclusions: These findings are conclusive evidence that the PVN is the center of the HPT axis for regulation of serum levels of thyroid hormones and that the serum TSH levels are not decreased in tertiary hypothyroidism. We also noted that TRH from the PVN regulated prolactin, whereas TRH from non-PVN sources regulated glucose metabolism.


Assuntos
Núcleo Hipotalâmico Paraventricular/enzimologia , Hormônios Tireóideos/metabolismo , Hormônio Liberador de Tireotropina/metabolismo , Animais , Modelos Animais de Doenças , Camundongos , Núcleo Hipotalâmico Paraventricular/fisiopatologia , Estatísticas não Paramétricas
5.
Elife ; 102021 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-34787078

RESUMO

Hypersomnolence disorder (HD) is characterized by excessive sleep, which is a common sequela following stroke, infection, or tumorigenesis. HD is traditionally thought to be associated with lesions of wake-promoting nuclei. However, lesions of a single wake-promoting nucleus, or even two simultaneously, did not exert serious HD. Therefore, the specific nucleus and neural circuitry for HD remain unknown. Here, we observed that the paraventricular nucleus of the hypothalamus (PVH) exhibited higher c-fos expression during the active period (23:00) than during the inactive period (11:00) in mice. Therefore, we speculated that the PVH, in which most neurons are glutamatergic, may represent one of the key arousal-controlling centers. By using vesicular glutamate transporter 2 (vglut2Cre) mice together with fiber photometry, multichannel electrophysiological recordings, and genetic approaches, we found that PVHvglut2 neurons were most active during wakefulness. Chemogenetic activation of PVHvglut2 neurons induced wakefulness for 9 hr, and photostimulation of PVHvglut2→parabrachial complex/ventral lateral septum circuits immediately drove transitions from sleep to wakefulness. Moreover, lesioning or chemogenetic inhibition of PVHvglut2 neurons dramatically decreased wakefulness. These results indicate that the PVH is critical for arousal promotion and maintenance.


Assuntos
Nível de Alerta/fisiologia , Distúrbios do Sono por Sonolência Excessiva/fisiopatologia , Neurônios/fisiologia , Núcleo Hipotalâmico Paraventricular/fisiopatologia , Animais , Masculino , Camundongos , Proteína Vesicular 2 de Transporte de Glutamato/genética , Proteína Vesicular 2 de Transporte de Glutamato/metabolismo , Vigília
6.
Cardiovasc Toxicol ; 21(12): 1045-1057, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34537923

RESUMO

Astaxanthin (AST) has a variety of biochemical effects, including anti-inflammatory, antioxidative, and antihypertensive functions. The aim of the present study was to determine whether AST ameliorates blood pressure in salt-induced prehypertensive rats by ROS/MAPK/NF-κB pathways in hypothalamic paraventricular nucleus.To explore the central effects of AST on the development of blood pressure, prehypertensive rats were induced by a high-salt diet (HS, 8% NaCl) and its control groups were treated with normal-salt diet (NS, 0.3% NaCl). The Dahl salt-sensitive (S) rats with HS diet for 6 weeks received AST or vehicle by gastric perfusion for 6 weeks. Compared to those with NS diet, rats with HS diet exhibited increased mean arterial pressure (MAP) and heart rate (HR). These increases were associated with higher plasma level of norepinephrine (NE), interleukin 1ß (IL-1ß), and interleukin 6 (IL-6); elevated PVN level of reactive oxygen species (ROS), NOX2, and NOX4, that of IL-1ß, IL-6, monocyte chemotactic protein 1 (MCP-1), tyrosine hydroxylase (TH), phosphorylation extracellular-signal-regulated kinase (p-ERK1/2), phosphorylation Jun N-terminal kinases (p-JNK), nuclear factor-kappa B (NF-κB) activity; and lower levels of IL-10, superoxide dismutase (SOD), and catalase (CAT) in the PVN. In addition, our data demonstrated that chronic AST treatment ameliorated these changes in the HS but not NS diet rats. These data suggested that AST could alleviate prehypertensive response in HS-induced prehypertension through ROS/MAPK/NF-κB pathways in the PVN.


Assuntos
Anti-Hipertensivos/farmacologia , Pressão Arterial/efeitos da radiação , Proteínas Quinases Ativadas por Mitógeno/metabolismo , NF-kappa B/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Núcleo Hipotalâmico Paraventricular/efeitos dos fármacos , Pré-Hipertensão/prevenção & controle , Espécies Reativas de Oxigênio/metabolismo , Animais , Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Modelos Animais de Doenças , Masculino , Núcleo Hipotalâmico Paraventricular/enzimologia , Núcleo Hipotalâmico Paraventricular/fisiopatologia , Fosforilação , Pré-Hipertensão/enzimologia , Pré-Hipertensão/etiologia , Pré-Hipertensão/fisiopatologia , Ratos Endogâmicos Dahl , Transdução de Sinais , Cloreto de Sódio na Dieta , Xantofilas/farmacologia
7.
Brain Res ; 1769: 147618, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34400123

RESUMO

Angiotensin II (AngII) immunoreactive cells, fibers and receptors, were found in the parvocelluar region of paraventricular nucleus (PVNp) and AngII receptors are present on vasopressinergic neurons. However, the mechanism by which vasopressin (AVP) and AngII may interact to regulate arterial pressure is not known. Thus, we tested the cardiovascular effects of blockade of the AngII receptors on AVP neurons and blockade of vasopressin V1a receptors on AngII neurons. We also explored whether the PVNp vasopressin plays a regulatory role during hypotension in anesthetized rat or not. Hypovolemic-hypotension was induced by gradual bleeding from femoral venous catheter. Either AngII or AVP injected into the PVNp produced pressor and tachycardia responses. The responses to AngII were blocked by V1a receptor antagonist. The responses to AVP were partially attenuated by AT1 antagonist and greatly attenuated by AT2 antagonist. Hemorrhage augmented the pressor response to AVP, indicating that during hemorrhage, sensitivity of PVNp to vasopressin was increased. By hemorrhagic-hypotension and bilateral blockade of V1a receptors of the PVNp, we found that vasopressinergic neurons of the PVNp regulate arterial pressure towards normal during hypotension. Taken together these findings and our previous findings about angII (Khanmoradi and Nasimi, 2017a) for the first time, we found that a mutual cooperative system of angiotensinergic and vasopressinergic neurons in the PVNp is a major regulatory controller of the cardiovascular system during hypotension.


Assuntos
Angiotensina II , Pressão Arterial , Hipotensão/fisiopatologia , Rede Nervosa/fisiopatologia , Núcleo Hipotalâmico Paraventricular/fisiopatologia , Vasopressinas , Angiotensina I/antagonistas & inibidores , Bloqueadores do Receptor Tipo 2 de Angiotensina II/farmacologia , Animais , Hemorragia/fisiopatologia , Hipovolemia/fisiopatologia , Masculino , Ratos , Ratos Sprague-Dawley
8.
Toxicol Appl Pharmacol ; 429: 115701, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34453990

RESUMO

Gut dysbiosis and dysregulation of gut-brain communication have been identified in hypertensive patients and animal models. Previous studies have shown that probiotic or prebiotic treatments exert positive effects on the pathophysiology of hypertension. This study aimed to examine the hypothesis that the microbiota-gut-brain axis is involved in the antihypertensive effects of curcumin, a potential prebiotic obtained from Curcuma longa. Male 8- to 10-week-old spontaneously hypertensive rats (SHRs) and Wistar Kyoto (WKY) rats were divided into four groups: WKY rats and SHRs treated with vehicle and SHRs treated with curcumin in dosage of 100 or 300 mg/kg/day for 12 weeks. Our results show that the elevated blood pressure of SHRs was markedly decreased in both curcumin-treated groups. Curcumin treatment also altered the gut microbial composition and improved intestinal pathology and integrity. These factors were associated with reduced neuroinflammation and oxidative stress in the hypothalamus paraventricular nucleus (PVN). Moreover, curcumin treatment increased butyrate levels in the plasma, which may be the result of increased butyrate-producing gut microorganisms. In addition, curcumin treatment also activated G protein-coupled receptor 43 (GPR 43) in the PVN. These results indicate that curcumin reshapes the composition of the gut microbiota and ameliorates the dysregulation of the gut-brain communication to induce antihypertensive effects.


Assuntos
Anti-Hipertensivos/farmacologia , Bactérias/efeitos dos fármacos , Pressão Sanguínea/efeitos dos fármacos , Eixo Encéfalo-Intestino/efeitos dos fármacos , Curcumina/farmacologia , Microbioma Gastrointestinal/efeitos dos fármacos , Hipertensão/tratamento farmacológico , Núcleo Hipotalâmico Paraventricular/efeitos dos fármacos , Animais , Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Bactérias/crescimento & desenvolvimento , Bactérias/metabolismo , Butiratos/sangue , Cardiomegalia/metabolismo , Cardiomegalia/microbiologia , Cardiomegalia/fisiopatologia , Cardiomegalia/prevenção & controle , Modelos Animais de Doenças , Disbiose , Hipertensão/metabolismo , Hipertensão/microbiologia , Hipertensão/fisiopatologia , Mediadores da Inflamação/metabolismo , Masculino , Estresse Oxidativo/efeitos dos fármacos , Núcleo Hipotalâmico Paraventricular/metabolismo , Núcleo Hipotalâmico Paraventricular/fisiopatologia , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , Receptores Acoplados a Proteínas G/metabolismo
9.
Neuropharmacology ; 198: 108748, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34389397

RESUMO

The paraventricular nucleus of the thalamus (PVT) is a midline thalamic brain region that has emerged as a critical circuit node in the regulation of behaviors across domains of affect and motivation, stress responses, and alcohol- and drug-related behaviors. The influence of the PVT in this diverse array of behaviors is a function of its ability to integrate and convey information about salience and valence through its connections with cortical, hypothalamic, hindbrain, and limbic brain regions. While understudied to date, recent studies suggest that several PVT efferents play critical and complex roles in drug and alcohol-related phenotypes. The PVT is also the site of signaling for many neuropeptides released from the synaptic terminals of distal inputs and local neuropeptidergic neurons within. While there is some evidence that neuropeptides including orexin, neurotensin, substance P, and cocaine and amphetamine-related transcript (CART) signal in the PVT to regulate alcohol/drug intake and reinstatement, there remains an overall lack of understanding of the roles of neuropeptides in the PVT in addiction-related behaviors, especially in a circuit-specific context. In this review, we present the current status of preclinical research regarding PVT circuits and neuropeptide modulation of the PVT in three aspects of the addiction cycle: reward/acquisition, withdrawal, and relapse, with a focus on alcohol, opioids (particularly morphine), and psychostimulants (particularly cocaine). Given the PVT's unique position within the broader neural landscape, we further discuss the potential ways in which neuropeptides may regulate these behaviors through their actions upon PVT circuits. This article is part of the special Issue on 'Neurocircuitry Modulating Drug and Alcohol Abuse'.


Assuntos
Alcoolismo/fisiopatologia , Rede Nervosa/fisiopatologia , Neuropeptídeos/metabolismo , Núcleo Hipotalâmico Paraventricular/fisiopatologia , Transtornos Relacionados ao Uso de Substâncias/fisiopatologia , Animais , Humanos , Transtornos Relacionados ao Uso de Opioides/fisiopatologia , Recompensa
10.
Molecules ; 26(12)2021 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-34207980

RESUMO

Prenatally malnourished rats develop hypertension in adulthood, in part through increased α1-adrenoceptor-mediated outflow from the paraventricular nucleus (PVN) to the sympathetic system. We studied whether both α1-adrenoceptor-mediated noradrenergic excitatory pathways from the locus coeruleus (LC) to the PVN and their reciprocal excitatory CRFergic connections contribute to prenatal undernutrition-induced hypertension. For that purpose, we microinjected either α1-adrenoceptor or CRH receptor agonists and/or antagonists in the PVN or the LC, respectively. We also determined the α1-adrenoceptor density in whole hypothalamus and the expression levels of α1A-adrenoceptor mRNA in the PVN. The results showed that: (i) agonists microinjection increased systolic blood pressure and heart rate in normotensive eutrophic rats, but not in prenatally malnourished subjects; (ii) antagonists microinjection reduced hypertension and tachycardia in undernourished rats, but not in eutrophic controls; (iii) in undernourished animals, antagonist administration to one nuclei allowed the agonists recover full efficacy in the complementary nucleus, inducing hypertension and tachycardia; (iv) early undernutrition did not modify the number of α1-adrenoceptor binding sites in hypothalamus, but reduced the number of cells expressing α1A-adrenoceptor mRNA in the PVN. These results support the hypothesis that systolic pressure and heart rate are increased by tonic reciprocal paraventricular-coerulear excitatory interactions in prenatally undernourished young-adult rats.


Assuntos
Hipertensão/patologia , Hipotálamo/metabolismo , Desnutrição/complicações , Núcleo Hipotalâmico Paraventricular/fisiopatologia , Efeitos Tardios da Exposição Pré-Natal/patologia , Animais , Pressão Sanguínea , Modelos Animais de Doenças , Feminino , Frequência Cardíaca , Hipertensão/etiologia , Hipertensão/fisiopatologia , Masculino , Gravidez , Efeitos Tardios da Exposição Pré-Natal/etiologia , Ratos
11.
Cardiovasc Toxicol ; 21(10): 820-834, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34269955

RESUMO

Long-term maternal salt intake induces the hypertension in offspring. Numerous studies have also indicated that high-salt diet causes the inflammation and an imbalance in neurotransmitters in the paraventricular nucleus (PVN) which increases the blood pressure and sympathetic activity. This study aimed to explore whether maternal salt intake induces hypertension in their male offspring by increasing the inflammation and changing the neurotransmitters balance in the paraventricular nucleus of offspring. This study includes two parts: Part I to explore the effect of high-salt diet on pregnant rats and the changes in inflammation and neurotransmitters in their male offspring PVN; Part II to reveal the influence on their offspring of bilateral PVN infusion of c-Src inhibitor dasatinib (DAS) in pregnant rats fed a high-salt diet. Maternal high-salt diet intake during copulation, pregnancy, and lactation impacted the offspring mean arterial pressure (MAP) and elevated the offspring PVN levels of p-Src, proinflammatory cytokines, and excitatory neurotransmitters. Bilateral PVN infusion of a c-Src inhibitor combined with maternal high-salt diets decreased MAP in the offspring. The infusion was also shown to suppress the Src-induced MAPK/NF-κB signaling pathway (p38 MAPK, JNK, Erk1/2), which attenuates inflammatory reactions. Finally, bilateral PVN infusion of the Src inhibitor in pregnant rat with high-salt diets improved the levels of inhibitory neurotransmitters in offspring PVN, which restored the excitatory-inhibitory neurotransmitter balance in male offspring. High-salt diets increase sympathetic activity and blood pressure in adult offspring, probably by activating the c-Src/MAPKs/NF-κB signaling pathway-induced inflammation. Moreover, NF-κB disrupts the downstream excitatory-inhibitory neurotransmitter balance in the PVN of male offspring.


Assuntos
Anti-Hipertensivos/farmacologia , Dasatinibe/farmacologia , Hipertensão/prevenção & controle , Mediadores da Inflamação/metabolismo , Neurotransmissores/metabolismo , Núcleo Hipotalâmico Paraventricular/metabolismo , Efeitos Tardios da Exposição Pré-Natal , Inibidores de Proteínas Quinases/farmacologia , Quinases da Família src/antagonistas & inibidores , Animais , Pressão Arterial , Modelos Animais de Doenças , Feminino , Hipertensão/enzimologia , Hipertensão/etiologia , Hipertensão/fisiopatologia , Masculino , Exposição Materna , Proteínas Quinases Ativadas por Mitógeno/metabolismo , NF-kappa B/metabolismo , Núcleo Hipotalâmico Paraventricular/fisiopatologia , Gravidez , Ratos Sprague-Dawley , Transdução de Sinais , Cloreto de Sódio na Dieta , Quinases da Família src/metabolismo
12.
Cell Rep ; 36(3): 109411, 2021 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-34289348

RESUMO

Oxytocin is a well-known neurohypophysial hormone that plays an important role in behavioral anxiety and nociception. Two major forms of long-term potentiation, presynaptic LTP (pre-LTP) and postsynaptic LTP (post-LTP), have been characterized in the anterior cingulate cortex (ACC). Both pre-LTP and post-LTP contribute to chronic-pain-related anxiety and behavioral sensitization. The roles of oxytocin in the ACC have not been studied. Here, we find that microinjections of oxytocin into the ACC attenuate nociceptive responses and anxiety-like behavioral responses in animals with neuropathic pain. Application of oxytocin selectively blocks the maintenance of pre-LTP but not post-LTP. In addition, oxytocin enhances inhibitory transmission and excites ACC interneurons. Similar results are obtained by using selective optical stimulation of oxytocin-containing projecting terminals in the ACC in animals with neuropathic pain. Our results demonstrate that oxytocin acts on central synapses and reduces chronic-pain-induced anxiety by reducing pre-LTP.


Assuntos
Ansiedade/fisiopatologia , Emoções , Giro do Cíngulo/patologia , Potenciação de Longa Duração , Neuralgia/patologia , Neuralgia/fisiopatologia , Ocitocina/farmacologia , Terminações Pré-Sinápticas/patologia , Analgésicos/farmacologia , Animais , Ansiolíticos/farmacologia , Comportamento Animal/efeitos dos fármacos , Cálcio/metabolismo , Dor Crônica/patologia , Dor Crônica/fisiopatologia , Emoções/efeitos dos fármacos , Feminino , Giro do Cíngulo/efeitos dos fármacos , Giro do Cíngulo/fisiopatologia , Interneurônios/efeitos dos fármacos , Luz , Potenciação de Longa Duração/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microinjeções , Tecido Nervoso/efeitos dos fármacos , Tecido Nervoso/patologia , Tecido Nervoso/fisiopatologia , Inibição Neural/efeitos dos fármacos , Neuralgia/complicações , Ocitocina/administração & dosagem , Núcleo Hipotalâmico Paraventricular/efeitos dos fármacos , Núcleo Hipotalâmico Paraventricular/patologia , Núcleo Hipotalâmico Paraventricular/fisiopatologia , Terminações Pré-Sinápticas/efeitos dos fármacos , Receptores Acoplados a Proteínas G/metabolismo , Receptores de GABA-A/metabolismo , Receptores de Ocitocina/genética , Receptores de Ocitocina/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transmissão Sináptica/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos
13.
Cardiovasc Toxicol ; 21(9): 721-736, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34076830

RESUMO

Apigenin, identified as 4', 5, 7-trihydroxyflavone, is a natural flavonoid compound that has many interesting pharmacological activities and nutraceutical potential including anti-inflammatory and antioxidant functions. Chronic, low-grade inflammation and oxidative stress are involved in both the initiation and progression of hypertension and hypertension-induced cardiac hypertrophy. However, whether or not apigenin improves hypertension and cardiac hypertrophy through modulating NADPH oxidase-dependent reactive oxygen species (ROS) generation and inflammation in hypothalamic paraventricular nucleus (PVN) has not been reported. This study aimed to investigate the effects of apigenin on hypertension in spontaneously hypertensive rats (SHRs) and its possible central mechanism of action. SHRs and Wistar-Kyoto (WKY) rats were randomly assigned and treated with bilateral PVN infusion of apigenin or vehicle (artificial cerebrospinal fluid) via osmotic minipumps (20 µg/h) for 4 weeks. The results showed that after PVN infusion of apigenin, the mean arterial pressure (MAP), heart rate, plasma norepinephrine (NE), Beta 1 receptor in kidneys, level of phosphorylation of PKA in the ventricular tissue and cardiac hypertrophy, perivascular fibrosis, heart level of oxidative stress, PVN levels of oxidative stress, interleukin 1ß (IL-1ß), interleukin 6 (IL-6), iNOS, monocyte chemotactic protein 1 (MCP-1), tyrosine hydroxylase (TH), NOX2 and NOX4 were attenuated and PVN levels of interleukin 10 (IL-10), superoxide dismutase 1 (Cu/Zn-SOD) and the 67-kDa isoform of glutamate decarboxylase (GAD67) were increased. These results revealed that apigenin improves hypertension and cardiac hypertrophy in SHRs which are associated with the down-regulation of NADPH oxidase-dependent ROS generation and inflammation in the PVN.


Assuntos
Anti-Inflamatórios/farmacologia , Anti-Hipertensivos/farmacologia , Antioxidantes/farmacologia , Apigenina/farmacologia , Cardiomegalia/tratamento farmacológico , Citocinas/metabolismo , Hipertensão/tratamento farmacológico , NADPH Oxidases/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Núcleo Hipotalâmico Paraventricular/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Animais , Pressão Arterial/efeitos dos fármacos , Cardiomegalia/enzimologia , Cardiomegalia/fisiopatologia , Modelos Animais de Doenças , Fibrose , Hipertensão/enzimologia , Hipertensão/fisiopatologia , Masculino , Miocárdio/metabolismo , Miocárdio/patologia , NADPH Oxidases/genética , Núcleo Hipotalâmico Paraventricular/enzimologia , Núcleo Hipotalâmico Paraventricular/fisiopatologia , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , Função Ventricular Esquerda/efeitos dos fármacos , Remodelação Ventricular/efeitos dos fármacos
14.
Artigo em Inglês | MEDLINE | ID: mdl-33915218

RESUMO

Treatment resistance of anxiety-related disorders often arises from an inappropriate fear expression, impairment in fear extinction, and spontaneous return of fear. Stress exposure is considered a high risk factor for neuropsychiatric disorders, but understanding of the long-term consequences of stress is limited, particularly when it comes to treatment outcome. Therefore, studying the consequences of acute stress would provide critical information on the role of stress in psychopathology. In the present study, we investigated the effect of acute immobilization stress on anxiety-like behavior and on conditioned fear memory. Our results demonstrate that prior stress exposure had no effect on anxiety-related behavior, fear acquisition, as well as fear extinction compared to non-stressed controls, but resulted in significantly higher rates of freezing during recall of extinction, indicating a consolidation failure. Further, immunohistochemical analysis of the expression of the immediate early gene c-Fos after recall of extinction revealed increased neuronal activity in the posterior paraventricular nucleus of the thalamus (PVT) in previously stressed animals compared to non-stressed controls. These results indicate, firstly, that acute stress affects long-term fear memory even after successful extinction training, and secondly, a strong involvement of the PVT in maladaptive fear responses induced by prior stress. Thus, stress-induced changes in PVT neuronal activity might be of importance for the pathophysiology of stress-sensitive anxiety-related psychiatric disorders, since exposure to an earlier acute stressor could counteract the success of therapy.


Assuntos
Transtornos de Ansiedade/fisiopatologia , Extinção Psicológica/fisiologia , Medo/fisiologia , Rememoração Mental/fisiologia , Neurônios/metabolismo , Tálamo/fisiopatologia , Animais , Condicionamento Psicológico/fisiologia , Masculino , Camundongos Endogâmicos C57BL , Núcleo Hipotalâmico Paraventricular/fisiopatologia
15.
Cardiovasc Toxicol ; 21(6): 472-489, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33582931

RESUMO

Oxidative stress in the hypothalamic paraventricular nucleus (PVN) contributes greatly to the development of hypertension. The recombinant nuclear respiratory factor 1 (Nrf1) regulates the transcription of several genes related to mitochondrial respiratory chain function or antioxidant expression, and thus may be involved in the pathogenesis of hypertension. Here we show that in the two-kidney, one-clip (2K1C) hypertensive rats the transcription level of Nrf1 was elevated comparing to the normotensive controls. Knocking down of Nrf1 in the PVN of 2K1C rats can significantly reduce their blood pressure and level of plasma norepinephrine (NE). Analysis revealed significant reduction of superoxide production level in both whole cell and mitochondria, along with up-regulation of superoxide dismutase 1 (Cu/Zn-SOD), NAD(P)H: quinone oxidoreductase 1 (NQO1), thioredoxin-dependent peroxiredoxin 3 (Prdx3), cytochrome c (Cyt-c) and glutathione synthesis rate-limiting enzyme (glutamyl-cysteine ligase catalytic subunit (Gclc) and modifier subunit (Gclm)), and down-regulation of cytochrome c oxidase subunit VI c (Cox6c) transcription after Nrf1 knock-down. In addition, the reduced ATP production and elevated mitochondrial membrane potential in the PVN of 2K1C rats were reinstated with Nrf1 knock-down, together with restored expression of peroxisome proliferator-activated receptor-γ coactivator 1α (PGC-1α), mitochondrial transcription factor A (Tfam), coiled-coil myosin-like BCL2-interacting protein (Beclin1), and Mitofusin 1 (Mfn1), which are related to the mitochondrial biogenesis, fusion, and autophagy. Together, the results indicate that the PVN Nrf1 is associated with the development of 2K1C-induced hypertension, and Nrf1 knock-down in the PVN can alleviate hypertension through intervention of mitochondrial function and restorement of the production-removal balance of superoxide.


Assuntos
Pressão Sanguínea , Hipertensão Renovascular/metabolismo , Mitocôndrias/metabolismo , Fator 1 Nuclear Respiratório/metabolismo , Estresse Oxidativo , Núcleo Hipotalâmico Paraventricular/metabolismo , Superóxidos/metabolismo , Animais , Modelos Animais de Doenças , Técnicas de Silenciamento de Genes , Hipertensão Renovascular/genética , Hipertensão Renovascular/fisiopatologia , Hipertensão Renovascular/prevenção & controle , Masculino , Mitocôndrias/genética , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Fator 1 Nuclear Respiratório/genética , Núcleo Hipotalâmico Paraventricular/fisiopatologia , Interferência de RNA , Ratos Sprague-Dawley
16.
J Cardiovasc Pharmacol ; 77(2): 170-181, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33538532

RESUMO

ABSTRACT: Oxidative stress, the renin-angiotensin system (RAS), and inflammation are some of the mechanisms involved in the pathogenesis of hypertension. The aim of this study is to examine the protective effect of the chronic administration of astaxanthin, which is extracted from the shell of crabs and shrimps, into hypothalamic paraventricular nucleus (PVN) in spontaneously hypertensive rats. Animals were randomly assigned to 2 groups and treated with bilateral PVN infusion of astaxanthin or vehicle (artificial cerebrospinal fluid) through osmotic minipumps (Alzet Osmotic Pumps, Model 2004, 0.25 µL/h) for 4 weeks. Spontaneously hypertensive rats had higher mean arterial pressure and plasma level of norepinephrine and proinflammatory cytokine; higher PVN levels of reactive oxygen species, NOX2, NOX4, IL-1ß, IL-6, ACE, and AT1-R; and lower PVN levels of IL-10 and Cu/Zn SOD, Mn SOD, ACE2, and Mas receptors than Wistar-Kyoto rats. Our data showed that chronic administration of astaxanthin into PVN attenuated the overexpression of reactive oxygen species, NOX2, NOX4, inflammatory cytokines, and components of RAS within the PVN and suppressed hypertension. The present results revealed that astaxanthin played a role in the brain. Our findings demonstrated that astaxanthin had protective effect on hypertension by improving the balance between inflammatory cytokines and components of RAS.


Assuntos
Anti-Inflamatórios/administração & dosagem , Anti-Hipertensivos/administração & dosagem , Pressão Arterial/efeitos dos fármacos , Citocinas/metabolismo , Hipertensão/tratamento farmacológico , Mediadores da Inflamação/metabolismo , Núcleo Hipotalâmico Paraventricular/efeitos dos fármacos , Sistema Renina-Angiotensina/efeitos dos fármacos , Animais , Modelos Animais de Doenças , Hipertensão/metabolismo , Hipertensão/fisiopatologia , Infusões Parenterais , Masculino , Núcleo Hipotalâmico Paraventricular/metabolismo , Núcleo Hipotalâmico Paraventricular/fisiopatologia , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , Fatores de Tempo , Xantofilas/administração & dosagem
17.
Biomed Pharmacother ; 135: 111189, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33388596

RESUMO

Microbiota has a role in the host blood pressure (BP) regulation. The immunosuppressive drug mofetil mycophenolate (MMF) ameliorates hypertension. The present study analyzes whether MMF improves dysbiosis in a genetic model of hypertension. Twenty weeks old male spontaneously hypertensive rats (SHR) and Wistar Kyoto rats (WKY) were randomly divided into three groups: untreated WKY, untreated SHR, and SHR treated with MMF for 5 weeks. MMF treatment restored gut bacteria from the phyla Firmicutes and Bacteroidetes, and acetate- and lactate-producing bacteria to levels similar to those found in WKY, increasing butyrate-producing bacteria. MMF increased the percentage of anaerobic bacteria in the gut. The improvement of gut dysbiosis was associated with an enhanced colonic integrity and a decreased sympathetic drive in the gut. MMF inhibited neuroinflammation in the paraventricular nuclei in the hypothalamus. MMF increased the lower regulatory T cells proportion in mesenteric lymph nodes and Th17 and Th1 infiltration in aorta, improved aortic endothelial function and reduced systolic BP. This study demonstrates for the first time that MMF reduces gut dysbiosis in SHR. This effect could be related to its capability to improve gut integrity due to reduced sympathetic drive in the gut associated to the reduced brain neuroinflammation.


Assuntos
Anti-Hipertensivos/farmacologia , Bactérias/efeitos dos fármacos , Pressão Sanguínea/efeitos dos fármacos , Colo/microbiologia , Microbioma Gastrointestinal/efeitos dos fármacos , Hipertensão/tratamento farmacológico , Ácido Micofenólico/farmacologia , Núcleo Hipotalâmico Paraventricular/efeitos dos fármacos , Animais , Aorta Torácica/efeitos dos fármacos , Aorta Torácica/imunologia , Aorta Torácica/fisiopatologia , Bactérias/crescimento & desenvolvimento , Bactérias/metabolismo , Células Cultivadas , Colo/inervação , Citocinas/metabolismo , Modelos Animais de Doenças , Disbiose , Hipertensão/imunologia , Hipertensão/microbiologia , Hipertensão/fisiopatologia , Mediadores da Inflamação/metabolismo , Neuroimunomodulação/efeitos dos fármacos , Núcleo Hipotalâmico Paraventricular/imunologia , Núcleo Hipotalâmico Paraventricular/fisiopatologia , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , Sistema Nervoso Simpático/efeitos dos fármacos , Sistema Nervoso Simpático/fisiopatologia , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia , Linfócitos T/metabolismo
18.
Cardiovasc Toxicol ; 21(4): 286-300, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33165770

RESUMO

Hypertension, as one of the major risk factors for cardiovascular disease, significantly affects human health. Prostaglandin E2 (PGE2) and the E3-class prostanoid (EP3) receptor have previously been demonstrated to modulate blood pressure and hemodynamics in various animal models of hypertension. The PGE2-evoked pressor and biochemical responses can be blocked with the EP3 receptor antagonist, L-798106 (N-[(5-bromo-2methoxyphenyl)sulfonyl]-3-[2-(2-naphthalenylmethyl) phenyl]-2-propenamide). In the hypothalamic paraventricular nucleus (PVN), sympathetic excitation can be introduced by PGE2, which can activate EP3 receptors located in the PVN. In such a case, the central knockdown of EP3 receptor can be considered as a potential therapeutic modality for hypertension management. The present study examined the efficacy of the PVN infusion of L-798106, by performing experiments on spontaneously hypertensive rats (SHRs) and normotensive Wistar-Kyoto rats (WKYs). The rats were administered with chronic bilateral PVN infusion of L-798106 (10 µg/day) or the vehicle for 28 days. The results indicated that the SHRs had a higher mean arterial pressure (MAP), an increased Fra-like (Fra-LI) activity in the PVN, as well as a higher expression of gp91phox, mitogen-activated protein kinase (MAPK), and proinflammatory cytokines in the PVN compared with the WKYs. Additionally, the expression of Cu/Zn-SOD in the PVN of the SHRs was reduced compared with the WKYs. The bilateral PVN infusion of L-798106 significantly reduced MAP, as well as plasma norepinephrine (NE) levels in the SHRs. It also inhibited Fra-LI activity and reduced the expression of gp91phox, proinflammatory cytokines, and MAPK, whereas it increased the expression of Cu/Zn-SOD in the PVN of SHRs. In addition, L-798106 restored the balance of the neurotransmitters in the PVN. On the whole, the findings of the present study demonstrate that the PVN blockade of EP3 receptor can ameliorate hypertension and cardiac hypertrophy partially by attenuating ROS and proinflammatory cytokines, and modulating neurotransmitters in the PVN.


Assuntos
Anti-Hipertensivos/farmacologia , Pressão Sanguínea/efeitos dos fármacos , Hipertensão/prevenção & controle , Mediadores da Inflamação/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Núcleo Hipotalâmico Paraventricular/efeitos dos fármacos , Antagonistas de Prostaglandina/farmacologia , Receptores de Prostaglandina E Subtipo EP3/antagonistas & inibidores , Sulfonamidas/farmacologia , Animais , Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Cardiomegalia/metabolismo , Cardiomegalia/fisiopatologia , Cardiomegalia/prevenção & controle , Modelos Animais de Doenças , Hipertensão/metabolismo , Hipertensão/fisiopatologia , Masculino , Núcleo Hipotalâmico Paraventricular/metabolismo , Núcleo Hipotalâmico Paraventricular/fisiopatologia , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , Espécies Reativas de Oxigênio/metabolismo , Receptores de Prostaglandina E Subtipo EP3/metabolismo , Transdução de Sinais
19.
Am J Physiol Regul Integr Comp Physiol ; 320(3): R213-R225, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33264070

RESUMO

Depression is an independent nontraditional risk factor for cardiovascular disease and mortality. The chronic unpredictable mild stress (CMS) rat model is a validated model of depression. Within the paraventricular nucleus (PVN), vasopressin (VP) via V1aR and V1bR have been implicated in stress and neurocardiovascular dysregulation. We hypothesized that in conscious, unrestrained CMS rats versus control, unstressed rats, PVN VP results in elevated arterial pressure (MAP), heart rate, and renal sympathetic nerve activity (RSNA) via activation of V1aR and/or V1bR. Male rats underwent 4 wk of CMS or control conditions. They were then equipped with hemodynamic telemetry transmitters, PVN cannula, and left renal nerve electrode. V1aR or V1bR antagonism dose-dependently inhibited MAP after VP injection. V1aR or V1bR blockers at their ED50 doses did not alter baseline parameters in either control or CMS rats but attenuated the pressor response to VP microinjected into PVN by ∼50%. Combined V1aR and V1bR inhibition completely blocked the pressor response to PVN VP in control but not CMS rats. CMS rats required combined maximally inhibitory doses to block either endogenous VP within the PVN or responses to microinjected VP. Compared with unstressed control rats, CMS rats had higher plasma VP levels and greater abundance of V1aR and V1bR transcripts within PVN. Thus, the CMS rat model of depression results in higher resting MAP, heart rate, and RSNA, which can be mitigated by inhibiting vasopressinergic mechanisms involving both V1aR and V1bR within the PVN. Circulating VP may also play a role in the pressor response.


Assuntos
Pressão Arterial , Sistema Cardiovascular/inervação , Hipertensão/etiologia , Rim/inervação , Núcleo Hipotalâmico Paraventricular/metabolismo , Receptores de Vasopressinas/metabolismo , Estresse Psicológico/complicações , Sistema Nervoso Simpático/fisiopatologia , Animais , Antagonistas dos Receptores de Hormônios Antidiuréticos/farmacologia , Pressão Arterial/efeitos dos fármacos , Doença Crônica , Modelos Animais de Doenças , Frequência Cardíaca , Hipertensão/metabolismo , Hipertensão/fisiopatologia , Masculino , Núcleo Hipotalâmico Paraventricular/efeitos dos fármacos , Núcleo Hipotalâmico Paraventricular/fisiopatologia , Ratos Sprague-Dawley , Receptores de Vasopressinas/efeitos dos fármacos , Estresse Psicológico/metabolismo , Estresse Psicológico/fisiopatologia , Sistema Nervoso Simpático/efeitos dos fármacos , Vasopressinas/farmacologia
20.
Exp Neurol ; 335: 113517, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33132201

RESUMO

Chronic intermittent hypoxia (CIH) is a model for obstructive sleep apnea. The paraventricular nucleus (PVN) of the hypothalamus has been suggested to contribute to CIH-induced exaggerated cardiorespiratory reflexes, sympathoexcitation and hypertension. This may occur, in part, via activation of the dense catecholaminergic projections to the PVN that originate in the brainstem. However, the contribution of norepinephrine (NE) and activation of its alpha-adrenergic receptors (α-ARs) in the PVN after CIH exposure is unknown. We hypothesized CIH would increase the contribution of catecholaminergic input. To test this notion, we determined the expression of α-AR subtypes, catecholamine terminal density, and synaptic properties of PVN parvocellular neurons in response to α-AR activation in male Sprague-Dawley normoxic (Norm) and CIH exposed rats. CIH decreased mRNA for α1d and α2b AR. Dopamine-ß-hydroxylase (DßH) terminals in the PVN were similar between groups. NE and the α1-AR agonist phenylephrine (PE) increased sEPSC frequency after Norm but not CIH. Block of α1-ARs with prazosin alone did not alter sEPSCs after either Norm or CIH but did prevent agonist augmentation of sEPSC frequency following normoxia. These responses to NE were mimicked by PE during action potential block suggesting presynaptic terminal alterations in CIH. Altogether, these results demonstrate that α1-AR activation participates in neuronal responses in Norm, but are attenuated after CIH. These results may provide insight into the cardiovascular, respiratory and autonomic nervous systems alterations in obstructive sleep apnea.


Assuntos
Hipóxia/fisiopatologia , Núcleo Hipotalâmico Paraventricular/fisiopatologia , Receptores Adrenérgicos alfa , Síndromes da Apneia do Sono/fisiopatologia , Agonistas de Receptores Adrenérgicos alfa 1/farmacologia , Antagonistas de Receptores Adrenérgicos alfa 1/farmacologia , Animais , Catecolaminas/metabolismo , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Masculino , Neurônios , Norepinefrina/farmacologia , Fenilefrina/farmacologia , Ratos , Ratos Sprague-Dawley , Transdução de Sinais , Sinapses/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...